In technical terms, this is equivalent of getting atleast one Heads.
Probability of getting atleast one Heads is close to 1., about 100% percent.
The probability of getting atleast one Heads is calculated by multiplying all the probabilities of not getting a Heads for each coin and then subtracting the answer from 1.
P(Heads>=1) = 1 - [ P(H=0)Coin1 x P(H=0)Coin2 x P(H=0)Coin3 x P(H=0)Coin4 x P(H=0)Coin5 x P(H=0)Coin6 x P(H=0)Coin7 x P(H=0)Coin8 x P(H=0)Coin9 x P(H=0)Coin10 x P(H=0)Coin11 x P(H=0)Coin12 x P(H=0)Coin13 x P(H=0)Coin14 x P(H=0)Coin15 x P(H=0)Coin16 x P(H=0)Coin17 x P(H=0)Coin18 x P(H=0)Coin19 x P(H=0)Coin20 x ... ] = 1 - [ 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x ... ]You can generate all possible permutations and combinations of 1 Coin - 32 times containing atleast one Heads using the following permutations and combinations generator All possible combinations of 32 coins with atleast one Heads All possible permutations of 32 coins with atleast one Heads
To verify the answer, you can divide the number of permutations containing atleast 1 Heads by number of total possible permutations of 32 coins.
Probability of not getting any Heads is close to 0.000000000233, about 0.000000023% percent.
Probability of getting zero Heads is calculated by multiplying all the probabilities of not getting a Heads for each coin.
P(Heads=0) = P(H=0)Coin1 x P(H=0)Coin2 x P(H=0)Coin3 x P(H=0)Coin4 x P(H=0)Coin5 x P(H=0)Coin6 x P(H=0)Coin7 x P(H=0)Coin8 x P(H=0)Coin9 x P(H=0)Coin10 x P(H=0)Coin11 x P(H=0)Coin12 x P(H=0)Coin13 x P(H=0)Coin14 x P(H=0)Coin15 x P(H=0)Coin16 x P(H=0)Coin17 x P(H=0)Coin18 x P(H=0)Coin19 x P(H=0)Coin20 x ... = 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x ...
Probability of getting exactly 1 Heads is close to 0.00000000745, about 0.00000075% percent.
You can calculate this using counting or by using the binomial distribution
You can think of 32 coins as spots to be filled. There are 4,294,967,296 ways to fill these spots with either a Heads or Tails (all possible permutations). Now, we need to find how many of these permutations contain exactly 1 Heads. In other words, in how many different ways can we place 1 Heads in 32 spots? Or, in how many ways can we pick 1 out of 32 spots? The answer can be caclulated using the formula [ 32 choose 1 ]. So, there are 32 ways to choose 1 out of 32 spots. The probability is calculated by dividing the number of ways to pick 1 spots by the number of total permuations.
P (H=1) = Ways to pick 1 out of 32 spots / Total permutations of 32 coins = (32 choose 1) / (2^32) = 32 / 4294967296
In Binomial Distribution, we look for k number of successful events in n number of trials where p is the probability of each successful event. Here, a successful event means getting a Heads and an event means a coin flip.
To get exactly 1 Heads, we need k=1 successful events out of total n=32 events. Each event has a probability p=1/2 of occuring.
Probability of k=1 successful events is then calculated as follows.P(k=1) = (n choose k) pk (1-p)n-k = (32 choose 1) (1/2)1 (1/2)32-1 = (32 choose 1) (1/2)32 = 32 x (1/4294967296)
You can generate all possible permutations and combinations of 1 Coin - 32 times containing exactly 1 Heads using the following permutations and combinations generator All possible combinations of 32 coins with exactly 1 Heads All possible permutations of 32 coins with exactly 1 Heads
To verify the answer, you can divide the number of permutations containing exactly 1 Heads by number of total possible permutations.
Probability of getting exactly 16 Heads is close to 0.14, about 13.99% percent.
You can calculate this using counting or by using the binomial distribution
You can think of 32 coins as spots to be filled. There are 4,294,967,296 ways to fill these spots with either a Heads or Tails (all possible permutations). Now, we need to find how many of these permutations contain exactly 16 Heads. In other words, in how many different ways can we place 16 Heads in 32 spots? Or, in how many ways can we pick 16 out of 32 spots? The answer can be caclulated using the formula [ 32 choose 16 ]. So, there are 601080390 ways to choose 16 out of 32 spots. The probability is calculated by dividing the number of ways to pick 16 spots by the number of total permuations.
P (H=16) = Ways to pick 16 out of 32 spots / Total permutations of 32 coins = (32 choose 16) / (2^32) = 601080390 / 4294967296
In Binomial Distribution, we look for k number of successful events in n number of trials where p is the probability of each successful event. Here, a successful event means getting a Heads and an event means a coin flip.
To get exactly 16 Heads, we need k=16 successful events out of total n=32 events. Each event has a probability p=1/2 of occuring.
Probability of k=16 successful events is then calculated as follows.P(k=16) = (n choose k) pk (1-p)n-k = (32 choose 16) (1/2)16 (1/2)32-16 = (32 choose 16) (1/2)32 = 601080390 x (1/4294967296)
You can generate all possible permutations and combinations of 1 Coin - 32 times containing exactly 16 Heads using the following permutations and combinations generator All possible combinations of 32 coins with exactly 16 Heads All possible permutations of 32 coins with exactly 16 Heads
To verify the answer, you can divide the number of permutations containing exactly 16 Heads by number of total possible permutations.
Probability of getting exactly 31 Heads is close to 0.00000000745, about 0.00000075% percent.
You can calculate this using counting or by using the binomial distribution
You can think of 32 coins as spots to be filled. There are 4,294,967,296 ways to fill these spots with either a Heads or Tails (all possible permutations). Now, we need to find how many of these permutations contain exactly 31 Heads. In other words, in how many different ways can we place 31 Heads in 32 spots? Or, in how many ways can we pick 31 out of 32 spots? The answer can be caclulated using the formula [ 32 choose 31 ]. So, there are 32 ways to choose 31 out of 32 spots. The probability is calculated by dividing the number of ways to pick 31 spots by the number of total permuations.
P (H=31) = Ways to pick 31 out of 32 spots / Total permutations of 32 coins = (32 choose 31) / (2^32) = 32 / 4294967296
In Binomial Distribution, we look for k number of successful events in n number of trials where p is the probability of each successful event. Here, a successful event means getting a Heads and an event means a coin flip.
To get exactly 31 Heads, we need k=31 successful events out of total n=32 events. Each event has a probability p=1/2 of occuring.
Probability of k=31 successful events is then calculated as follows.P(k=31) = (n choose k) pk (1-p)n-k = (32 choose 31) (1/2)31 (1/2)32-31 = (32 choose 31) (1/2)32 = 32 x (1/4294967296)
You can generate all possible permutations and combinations of 1 Coin - 32 times containing exactly 31 Heads using the following permutations and combinations generator All possible combinations of 32 coins with exactly 31 Heads All possible permutations of 32 coins with exactly 31 Heads
To verify the answer, you can divide the number of permutations containing exactly 31 Heads by number of total possible permutations.
Probability of getting all Heads is close to 0.000000000233, about 0.000000023% percent.
This is calculated by multiplying together all the probabilities of getting a Heads for each coin.
P(Heads=32) = P(H=1)Coin1 x P(H=1)Coin2 x P(H=1)Coin3 x P(H=1)Coin4 x P(H=1)Coin5 x P(H=1)Coin6 x P(H=1)Coin7 x P(H=1)Coin8 x P(H=1)Coin9 x P(H=1)Coin10 x P(H=1)Coin11 x P(H=1)Coin12 x P(H=1)Coin13 x P(H=1)Coin14 x P(H=1)Coin15 x P(H=1)Coin16 x P(H=1)Coin17 x P(H=1)Coin18 x P(H=1)Coin19 x P(H=1)Coin20 x ... = 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x ...
Probability of getting one of a kind is close to 0.000000000466, about 0.000000047% percent.
There are 2 ways to get one of a kind (all Heads or all Tails). The probability of getting all of any kind is then caclulated by adding the probability of getting all Heads or all Tails. Since, probabilities of getting all Heads or all Tails are the same, we can just multiply one of them by 2. So, multiplying the probability of getting all Heads by 2 will give us the probability of getting all of any kind.
Probability of getting all of a kind = Pobability of getting all Heads + Pobability of getting all Tails = 2 x Pobability of getting all Heads = 2 x (1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x 1/2 x ...)
// Flip a Coin - 32 times // define the range of numbers to pick from var lowest = 1; // lowest possible side of the coin // 1 for heads var highest = 2; // highest possible side of the coin // 2 for tails var number_of_coins = 1; // how many coin to flip var times = 32; // how many times to flip // allow the coin to land on the side // change to false if sidelanding not desired var allow_sidelanding = true; var PROBABILITY_OF_SIDELANDING = 6000; // set the probability of sidelanding to 1 in 6000 var generated_flips = []; for (var i = 1; i <= times; i++) { // outer loop for the number of 'times' to flip the coins var this_flip = []; // array to store the results of this flip for (var j = 1; j <= number_of_coins; j++) { // inner loop for the number of coins // for each coin, generate a number between lowest and highest var coin_face = Math.floor(Math.random() * (highest-lowest+1) + lowest); // if sidelanding is allowed if (allow_sidelanding) { // first check for sidelanding scenario with given probability var edge = Math.floor(Math.random() * (PROBABILITY_OF_SIDELANDING-1+1) + 1); // if sidelanding is probable, override the coin face with edge value i.e. 3 // i.e. if we generated a 1 when generating a number between 1 and PROBABILITY_OF_SIDELANDING if (edge === 1) { coin_face = 3; } } this_flip.push(coin_face); //store this in the array } generated_flips.push(this_flip); // store the result of this flip in generated_flips } // print all the generated flips for (i = 0; i < generated_flips.length; i++) { // loop through the outer times array for (j = 0; j < generated_flips[i].length; j++) { // loop through the inner coin array //print each coin flip value followed by a space document.write(generated_flips[i][j]); document.write(" "); } //print a line break for each time document.writeln("<br>"); } /* Sample output */